

OBSOLETE PRODUCT

NO Recommended Control

stort Con No Recommended Keplacement at the No Recommended Support Center at contact our Technical Support Completion of Invitable Interest Completion of Interest Comple contact our Jechnical Support Center at 1.888.INTERSIL or www.intersil.com/tsc August 1998

File Number

3207.2

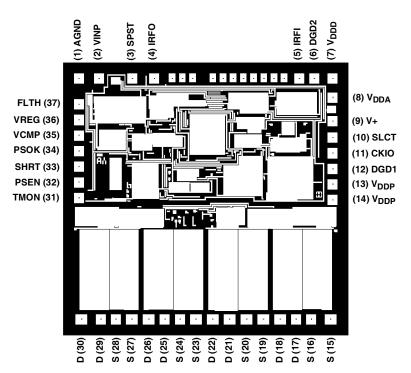
Power Control IC Single Chip **PowerSupply**

The HIP5060 is a complete power control IC, incorporating both the high power DMOS transistor, CMOS logic and low level analog circuitry on the same Intelligent Power IC. Both the standard "Boost" and the "SEPIC" (Single-Ended Primary Inductance Converter) power supply topologies are easily implemented with this single control IC.

Special power transistor current sensing circuitry is incorporated that minimizes losses due to the monitoring circuitry. Moreover, over-temperature and over-voltage detection circuitry is incorporated within the IC to monitor the chip temperature and the actual power supply output voltage. These circuits can disable the drive to the power transistor to protect both the transistor and, most importantly, the load from over-voltage.

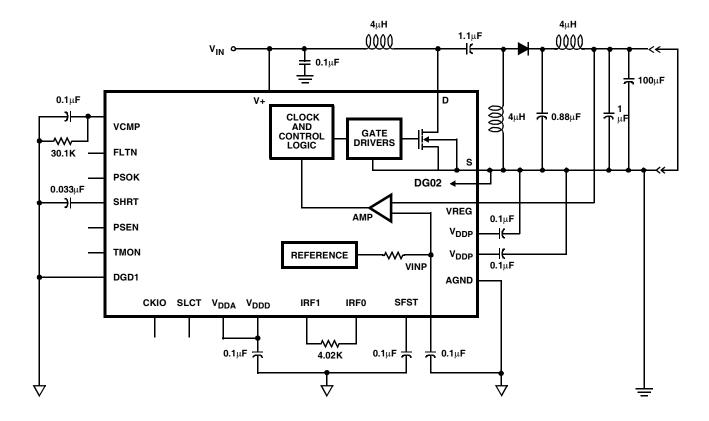
As a result of the power DMOS transistor's current and voltage capability (10A and 60V), power supplies with output power capability up to 100 watts are possible.

- Single Chip Current Mode Control IC
- 60V, 10A On-Chip DMOS Transistor
- Thermal Protection
- Over-Voltage Protection
- **Over-Current Protection**
- 1MHz Operation or External Clock
- Synchronization Output
- On-Chip Reference Voltage 5.1V
- Output Rise and Fall Times ~ 3ns
- Designed for 27V to 45V Operation


Applications

- Single Chip Power Supplies
- **Current Mode PWM Applications**
- Distributed Power Supplies
- Multiple Output Converters

Ordering Information


PART NUMBER	TEMPERATURE RANGE	PACKAGE
HIP5060DY	0°C to +85°C	37 Pad Chip
HIP5060DW	0°C to +85°C	Wafer

Chip

NOTE: Unused pads are for trim and test. 153 mils x 165 mils (3.88mm x 4.19mm)

Simplified Block Diagram

TYPICAL SEPIC CONFIGURATION

HIP5060

Absolute Maximum Ratings

Thermal Information

DC Supply Voltage, V+0.3V to 45V	Thermal Re
DMOS Drain Voltage0.3V to 60V	(Solder N
DMOS Drain Current	0.050" Th
DC Logic Supply0.3V to 16V	Maximum J
Output Voltage, Logic Outputs0.3V to 16V	(Controlle
Input Voltage, Analog and Logic0.3V to 16V	'
Operating Junction Temperature Range 0 °C to +110 °C	;
Storage Temperature Range	;

Thermal Resistance	θ JC
(Solder Mounted to	3°C/W Max
0.050" Thick Copper Heat Sink)	
Maximum Junction Temperature	+110 ⁰ C
(Controlled By Thermal Shutdown Circuit)	

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications V+ = 36V, $T_J = 0^{\circ}C$ to $+110^{\circ}C$; Unless Otherwise Specified

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
DEVICE PARA	AMETERS	•			1.	
l+	Supply Current	PSEN = 12V	-	19.5	32	mA
V_{DDA}	Internal Regulator Output Voltage	V+ = 15V to 45V, I _{OUT} = 10mA	11.0	-	13.2	V
VINP	Reference Voltage	I _{VINP} = 0mA	5.01	5.1	5.19	V
R _{VINP}	VINP Resistance	VINP = 0	-	900	-	Ω
ERROR AMPL	LIFIERS		•	•	•	•
V _{IO}	Input Offset Voltage (VREG - VINP)	I _{VCMP} = 0mA	-	-	10	mV
R _{IN} VREG	Input Resistance to GND	VREG = 5.1V	-	56	-	kΩ
g _m (VREG) VREG Transconductance I _{VCMP} /(VREG - VINP)		VCMP = 1V to 8V, SFST = 11V	15	30	50	mS
g _m (SFST)	SFST Transconductance I _{VCMP} /(VREG - SFST)	V _{SFST} < 4.9V	0.8	-	6	mS
I _{VCMP}	Maximum Source Current	VREG = 4.95V, VCMP = 8V	-2.5	-	-0.75	mA
I _{VCMP}	Maximum Sink Current	VREG = 5.25V, VCMP = 0.4V	0.75	-	2.5	mA
OVTH	Over-Voltage Threshold	Voltage at VREG for FLTN to be latched	6.2	-	6.7	V
CLOCK			•	•	•	•
fq	Internal Clock Frequency	SLCT = 0V, V _{DDD} = 12V	0.9	1.0	1.1	MHz
V _{TH} CKIN	External Clock Input Threshold Voltages	SLCT = 12V	33	-	66	%V _{DDD}
DMOS TRANS	SISTORS	•	•	•		•
r _{DS(on)}	Drain-Source On-State Resistance	I Drain = 5A, T _J = +25°C	-	-	0.13	Ω
I _{DSS}	Drain-Source Leakage Current	Drain to Source Voltage = 60V	-	1	100	μΑ
CURRENT CO	ONTROLLED PWM	•			•	•
V _{IO} VCMP Buffer Offset Voltage (VCMP - V _{IRFO})		IRFO = 0mA to -5mA, VCMP = 0.2V to 7.6V	-	-	125	mV
V _{TH} IRFO Voltage at IRFO that disables PWM. This is due to low load current			100	-	270	mV

HIP5060

Electrical Specifications V+=36V, $T_J=0^{o}C$ to $+110^{o}C$; Unless Otherwise Specified (Continued)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
CURRENT CO	NTROLLED PWM (Continued)		•	•	•	•
I _{TH} IRFO	Voltage at IRFO to enable SHRT output current. This is due to Regulator Over Current Condition		7.4	-	8.0	V
I _{SHRT}	SHRT Output Current, During Over-Current	V _{IRFO} = 8.1V	-37	-	-17	μΑ
V _{TH} SHRT	Threshold voltage on SHRT to set FLTN latch		4	6	8	V
I _{GAIN}	I _{PEAK} (DMOS _{DRAIN})/I _{IRFI}	ΔI (DMOS _{DRAIN})/Δt = 1A/ms	3.8	-	4.9	A/mA
R _{IRFI}	IRFI Resistance to GND	I _{IRFI} = 2mA	150	-	360	Ω
t _{RS} (Note 1)	Current Comparator Response Time	ΔΙ (DMOS _{DRAIN})/Δt > 1A/μs	-	30	-	ns
MCPW (Note 1)	Minimum Controllable Pulse Width		25	50	100	ns
MCPI (Note 1)	Minimum Controllable DMOS Peak Current		200	400	800	mA
START-UP			•	•	•	
V+	Rising V+ Power-On Reset Voltage		22	-	27	V
V+	Falling V+ Power-Off Set Voltage		-	15	-	V
V+	V+ Power-On Hysteresis		9	-	12	V
V _{TH} PSEN	Voltage at PSEN to Enable Supply		0.8	-	2.0	V
r _{PSEN}	Internal Pull-Up Resistance, to 5.1V		-	20	-	ΚΩ
I _{SFST}	Soft-Start Charging Current	V _{SFST} = 0V to 10V	-1.0	-0.7	-0.4	μΑ
I _{PSOK}	PSOK High-State Leakage Current	SFST = 0V, PSOK = 12V	-1	-	1	μΑ
V _{PSOK}	PSOK Low-State Voltage	SFST = 11V, I _{PSOK} = 1mA	-	-	0.4	V
V _{TH} SFST	PSOK Threshold, Rising V _{SFST}		9.4	-	11	V
THERMAL MO	NITOR	1				
TEMP (Note 1)	Substrate Temperature for Thermal Monitor to Trip	TMON pin open	105	-	135	°C


NOTE:

1. Determined by design, not a measured parameter.

Pin Descriptions

PAD NUMBER	DESIGNATION	DESCRIPTION	
1	AGND	Analog ground.	
2	VINP	Internal 5.1V reference.	
3	SFST	Controls the rate of rise of the output voltage. Time is determined by an internal $0.7\mu A$ current source and an external capacitor.	
4	IRFO	A resistor placed between this pad and IRFI converts the VCMP signal to a current for the current sense comparator. The maximum current is set by the value of the resistor, according to the equation: $I_{\mbox{\scriptsize PEAK}}=32/\mbox{\scriptsize R}.$ Where R is the value of the external resistor in $K\Omega$ and must be greater than $1.5K\Omega$ but less than $10K\Omega.$ For example, if the resistor chosen is $1.8K$, the peak current will be $17.8A.$ This assumes VCMP is $7.3V.$ Maximum output current should be kept below $20A.$	
5	IRFI	See IRFO	
6	DGD2	Ground of the DMOS gate driver. This pad is used for bypassing.	
7	V _{DDD}	Voltage input for the chip's digital circuits. This pad also allows decoupling of this supply.	
8	V_{DDA}	This is the analog supply and internal 12V regulator output.	
9	V+	This is the main supply voltage input pad to the regulator IC. Because of the high peak currents this pad must be well bypassed with at least a $0.7\mu F$ capacitor and may be composed of seven, single $0.1\mu F$ chip capacitors.	
10	SLCT	This pad provides for the option of using either internal 1MHz operation of for an external Floating or grounding this pad will place the internal clock at the CKIO pad. Returning this nal to V _{DDD} or 12V will allow application of an external clock to the IC via the CKIO pad. is an internal 50K pull down	
11	CKIO	Clock output when SLCT is floated or grounded. External clock input when SLCT is returned to 12V.	
12	DGD1	This pad is the return for the digital supply.	
13 & 14	V _{DDP}	These pads are used to decouple the high current pulses to the output driver transistors. The capacitor should be at least a $0.1\mu F$ chip capacitor placed close to this pad and the DMOS source pads.	
15, 16, 19, 20, 23, 24, 27, 28	S	Source pads of the DMOS power transistor.	
17, 18, 21, 22, 25, 26, 29, 30	D	Drain pads of the DMOS power transistor.	
31	TMON	This is the thermal shut down pad than can be used to disable the thermal shutdown circuit. By returning this pad to 12V the function is disabled. Returning this pad to ground will put the IC into the thermal shutdown state. Normally, this pad is left floating. Thermal shutdown occurs at a nominal junction temperature of +125°C.	
32	PSEN	This terminal is provided to activate the converter. This terminal may be left open or returned 5V for normal operation. When the input is low, the DMOS driver is disabled.	
33	SHRT	25μA is internally applied to this node when there is an over-current condition.	
34	PSOK	This pad provides a delayed positive indication when the supply is enabled.	
35	VCMP	Output of the transconductance amplifier. This node is used for both gain and frequency compensation of the loop.	
36	VREG	Input to the transconductance error amplifier is available on this pad. The other input is internally connected to the 5.1V reference, VINP, Pad 2.	
37	FLTN	This is an open drain output that remains low when V+ is too low for proper operation. This node and PSEN are useful in multiple converter configurations. This pad will be latched low when overtemperature, over-voltage or over-current is experienced.	

Functional Block Diagram

